Hierarchical Genetic Algorithm and Fuzzy Radial Basis Function Networks for Factors Influencing Hospital Length of Stay Outliers

نویسندگان

  • Ahmed Belderrar
  • Abdeldjebar Hazzab
چکیده

OBJECTIVES Controlling hospital high length of stay outliers can provide significant benefits to hospital management resources and lead to cost reduction. The strongest predictive factors influencing high length of stay outliers should be identified to build a high-performance prediction model for hospital outliers. METHODS We highlight the application of the hierarchical genetic algorithm to provide the main predictive factors and to define the optimal structure of the prediction model fuzzy radial basis function neural network. To establish the prediction model, we used a data set of 26,897 admissions from five different intensive care units with discharges between 2001 and 2012. We selected and analyzed the high length of stay outliers using the trimming method geometric mean plus two standard deviations. A total of 28 predictive factors were extracted from the collected data set and investigated. RESULTS High length of stay outliers comprised 5.07% of the collected data set. The results indicate that the prediction model can provide effective forecasting. We found 10 common predictive factors within the studied intensive care units. The obtained main predictive factors include patient demographic characteristics, hospital characteristics, medical events, and comorbidities. CONCLUSIONS The main initial predictive factors available at the time of admission are useful in evaluating high length of stay outliers. The proposed approach can provide a practical tool for healthcare providers, and its application can be extended to other hospital predictions, such as readmissions and cost.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting Hospital Length of Stay with Neural Networks

Critical care providers are faced with resource shortages and must find ways to effectively plan their resource utilization. Neural networks provide a new method for evaluating trauma patient (and other medical patient) level of illness and accurately predicting a patient’s length of stay at the critical care facility. Backpropagation, radial-basis-function, and fuzzy ARTMAP neural networks are...

متن کامل

On the use of back propagation and radial basis function neural networks in surface roughness prediction

Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...

متن کامل

Performance Improvement of Direct Torque Controlled Interior Permanent Magnet Synchronous Motor Drives Using Artificial Intelligence

The main theme of this paper is to present novel controller, which is a genetic based fuzzy Logic controller, for interior permanent magnet synchronous motor drives with direct torque control. A radial basis function network has been used for online tuning of the genetic based fuzzy logic controller. Initially different operating conditions are obtained based on motor dynamics incorporating...

متن کامل

ARFNNs under Different Types SVR for Identification of Nonlinear Magneto-Rheological Damper Systems with Outliers

This paper demonstrates different types support vector regression (SVR) for annealing robust fuzzy neural networks (ARFNNs) to identification of nonlinear magneto-rheological (MR) damper with outliers. A SVR has the good performances to determine the number of rule in the simplified fuzzy inference system and initial weights for the fuzzy neural networks. In this paper, we independently propose...

متن کامل

Comparing Two Methods of Neural Networks to Evaluate Dead Oil Viscosity

Reservoir characterization and asset management require comprehensive information about formation fluids. In fact, it is not possible to find accurate solutions to many petroleum engineering problems without having accurate pressure-volume-temperature (PVT) data. Traditionally, fluid information has been obtained by capturing samples and then by measuring the PVT properties in a laboratory. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2017